How to Measure, Visualise and
Interpret Performance Portability

Dr Tom Deakin

Senior Research Associate
University ot Bristol

L \\\\\\\W tom.deakin@bristol.ac.uk

u @tjdeakin https://hpc.tomdeakin.com

mailto:tom.deakin@bristol.ac.uk

The Next Platform, Jan 13th 2020: “HPC
in 2020: compute engine diversity gets real”
https:/ /www.nextplatform.com/2020/01/
13/hpc-in-2020-compute-engine-diversity-

Processor diversity at (pre-)Exascale Lz

At RIKEN: Fujitsu A64fx CPUs
At NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs
At ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4 per node)

At ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio GPUs (6 per node)

At LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4 per node)

https://hpc.tomdeakin.com 22

What is performance portability?

“A code 1s performance portable if it can achieve a similar fraction of peak
hardware performance on a range of different target architectures”

* Needs to be a good fraction of best .

achievable (i.e. hand optimised). i’ ! T us
‘ P / ‘ ' (1 ’/;\' B gme ;:“
: 2oy £ . ~\!Q‘;‘\:":‘Q\\-f‘;\“".’ ‘
* Range of architectures depends on your B M RN WL
. mY IQ \ .“ /" \'\\\// ‘
goal, but important to allow for future (\\ & \(ﬁ 2 / /"Lj,
developments. ot et S SRR LT L S - NIE

https: / / hpC.t(')ITldCakiﬁ.C(')m Image from Wikipedia, public domain 3

Enabling performance portability

Open standard parallel programming models

SYCL. openct OpenMP

Enabling HPC since 1997

Open-source programming abstractions

Zkokkos RAJV i

https://hpc.tomdeakin.com

All images copyright of respective owners.

BabelStream

* Based on McCalpin STREAM, except:

* Arrays allocated on the heap.

* Benchmarks achievable (main) memory bandwidth. %\L

* Problem size known only at runtime.
* Written in many programming models.

* Constructed of simple vector operations, e.g.:
* Triad: a[i] = b[1] + scalar * c[i]

https://github.com/UoB-HPC/BabelStream

https://hpc.tomdeakin.com

https://github.com/UoB-HPC/BabelStream

Measuring etficiency

* Compare relative application performance on different processors.
* Processors have ditferent performance characteristics.

* Architectural efficiency:

* Percentage of peak hardware performance.

* E.g. achieved GB/s or FLOP/s vs theoretical tech sheet.
* Application efficiency:

* Performance relative to specialised, hand-tuned, unportable, “best” version.
* Le. vs “World record”.

BabelStream heatmaps

Peak performance

BabelStream Triad array size=2%**25

Cascade Lake
Skylake
Knights Landing
Rome

Power 9
ThunderX?2
Graviton 2
A64FX

P100

V100

A100

Turing
Radeon VII
MI50

IrisPro Gen9

1200

1000

X
X 800
X

600

400

200

https://doi.org/10.1109/P3HPC51967.2020.00006

Architectural efficiency

BabelStream Triad array size=2%%25

Cascade Lake
Skylake
Knights Landing

Rome 118%

Power 9
ThunderX?2 X
Graviton 2 X
A64FX X
P100
V100
A100
Turing

Radeon VII
MI50
IrisPro Gen9

https://hpc.tomdeakin.com

100

https://doi.org/10.1016/j.future.2017.08.007

PP metric H
1 if, Vi € H
P(a,p, H) = ei(a,p) # 0
(a p) 7,;{ 6i(a7p)
0 otherwise

from statistics import harmonic mean
def pp(n):
if 0 in n:
return 0

return harmonic mean(n)

Python scripts: https://github.com/UoB-HPC/performance-portability/tree/main/metrics

https://hpc.tomdeakin.com 8

https://github.com/UoB-HPC/performance-portability/tree/main/metrics

https://doi.org/10.1109/P3HPC51967.2020.00007

Cascade plots

=@= Unportable eff.
= 1.0 - =M= Unportable PP
§ =@== Single Target eff.
:);;, 0.8 - == Single Target PP
o =@=_ Multi-Target eff.
§ 06 == Multi-Target PP
o =@=(Consistent (30%) eff.
% =il = Consistent (30%) PP
@ 0.4 - =®= Inconsistent eff.
= =3l = Inconsistent PP
o =®=(Consistent (70%) eff.
e 0.21 == Consistent (70%) PP
<
M A E H
0.0 MW B MEF I
C WG J
D

1 2 3 4 5 6 7 8 9 10
of platforms

https://hpc.tomdeakin.com 9

e https://github.com/UoB-HPC/performance-

— File Edit View Run Kernel Tabs Settings Help

S Ly portability/tree/main/metrics/notebooks

-/ 8 + X@ M » = c » Code v

import pp_vis

© Name - Last
Modified # Colours from https://personal.sron.nl/~pault/
ES M app_platfor.. a month ago app_colors = {
= Adaptive Ke... 6 months ago “Unportable": "“#0077BB",
% | m babelst 15 d “Single Target": "#33BBEE",
abelstrea... ays ago “Multi-Target": "#009988",
7 Binned cha.. 6 months ago "Consistent (30%)": "#EE7733",

"Consistent (70%) "'#CC3311",

7 Box plot gr... 6 months ago
plotg 9 "Inconsistent": "#EE3377",

7 Clustered b... 6 months ago

}
» @ Efficiency ... a minute ago plat_order=["0OpenMP", "Kokkos", "OpenACC", "CUDA", "OpenCL", "SYCL"]

Efficiency ... a month ago gsvorootattch/data/

M synthetic_c.. 15 days ago effs_df = pp_vis.app_effs(os.path.join(csv_root, "synthetic.csv"), raw_effs=True)

fig = plt.figure(figsize=(4, 4))
plat_colors = {}
plat_handles = []
synth_plats=effs_df [effs_df.columns[0]]
plat_cmap = mcolors.ListedColormap([
"'#762A83",
"'#9970AB",
"'#C2A5CF",
""#E7D4E8",
“#F7F7F7",
"'#1B7837",
"#5AAE61",
"#ACD39E",
"#D9FoD3"
1)
for i, p in enumerate(synth_plats):
plat_colors[p] = plat_cmap(float(i)/(len(synth_plats)-1))
plat_handles.append(mpatches.Patch(color=plat_colors[p], label=p))

handles = {}
gs = fig.add_gridspec(1,1)
index = [0, 0]

pp_vis.plot_cascade(fig, gs, index, effs_df, handles, app_colors=app_colors, plat_colors=plat_colors)
handle_names, handle_lists = zip(xhandles.items())

fig.legend(handle_lists, handle_names, loc='upper left', bbox_to_anchor=(1.0,1.0),ncol=1, handlelength=2.0)
fig.legend(handles=plat_handles, loc='lower left', bbox_to_anchor=(1.0,0.1), ncol=3, handlelength=1.0)
plt.tight_layout(pad=0.4,w_pad=0.5, h_pad=1.0)

plt.savefig(f"synthetic_cascade.png", dpi = 300 ,bbox_inches="tight")

=—e— Unportable eff.
-8~ Unportable PP
o Single Target off.
~u- Single Target PP
—e— Multi-Target eff.
-a- PP
—8— Consistent (30%) ef.
=8~ Consistent (30%) PP
—e— Inconsistent off.
-8~ Inconsistent PP
=e= Consistent (70%) eff.
=8~ Consistent (70%) PP

H
1
J

omm

coms

12 3 4 5 6 7 8 9 10
of platforms

0 1 @ Python 3| Idle Saving completed Mode: Command © Ln1, Col1 Efficiency Cascades BabelStream 2020.ipynb

https:/ /hpc.tomdeakin.com 10

Data from https://doi.org/10.1109/P3HPC51967.2020.00006

BabelStream Cascade plot

CUDA eff.
CUDA PP
OpenACC eff.
OpenACC PP
OpenCL eff.
OpenCL PP
Kokkos eff.
Kokkos PP
SYCL eff.
SYCL PP
OpenMP eff.
OpenMP PP

i

1.0

48

0.8 1

ot

0.6 1

Hi

App PP (dashed)/efficiency (solid)
[
T

CPUO I GPUO
CpPU1 I GPU1
CPU2 M GPU2
CPU3 GPU3
CPU4 GPU4
— T CPUb GPUbS
7 8 9 10 11 12 13 14 15 CPU6 GPU6
of platforms CPU7

6

—_
N
[V
S
U1+

https://hpc.tomdeakin.com 11

Measuring Productivity

https://doi.org/10.1109/P3HPC.2018.00006

* “Ideal” application has one version that i1s Performant, Portable and

Productive.

* Significant specialisation for Performance and/or Portability can impact

Productivity.

* Intel Code Base Investigator measures code divergence.

* Specialisation using C pre-processot.

httj

s:/ /github.com/intel/code-base-investigator

https://hpc.tomdeakin.com

12

https://github.com/intel/code-base-investigator

1.0 @ . Figure by J. Sewall and

Can always construct Everyone wants to be
the PP=1, CC=0 by here: single source, best J : PCI’II’IYCOOk from
combining the best performance everywhere : :
codes for each Rising PP results from performance But not realistic. upcoming ar ticle from
-_ a I I e platform into an increasing in one more more platforms. H k
application Broad or narrowly-focused Sewa 5 PCHHYCOO s
optimizations cause this.

Jacobsen, Deakin and
MclIntosh-Smith

0.8 -

0.6 -

Falling CC indicates
that platform-specific

code is being added,
or common code is
being removed. This

is commonly found
as codes are

04 - specialized.

uonezrundQ

Removing specialization
or adding common code
increases convergence;
this is typical of
introducing more and
higher-level abstractions.

Specialization

UOISSAIZY

0.2

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one

Being on the PP = 0 axis or more platforms.
is anomalous, since at
least one platform is
failing

OO | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Code Convergence (1- Code Divergence)
https:/ /hpc.tomdeakin.com 13

https://doi.org/10.1109/P3HPC51967.2020.00007

Summary

* Three Ps: Performance Portability and Productivity.
* Open standard programming models enable the three Ps.

* Measure the three Ps and use PP-CC plane to guide changes.

* Try out the methodology for yourself:
* Scripts and tools: https://github.com/UoB-HPC/performance-portability

* Code Base Investigator: https://github.com/intel/code-base-investigator

Thanks: Jason Sewall and John Pennycook at Intel

https://hpc.tomdeakin.com 14

https://github.com/UoB-HPC/performance-portability
https://github.com/intel/code-base-investigator

OpenMPCon 2021 | Bristol, UK | 13-15 September 2021 | 6th OpenMP Developers Conference

*OpenMPCOH CALL FOR SUBMISSIONS MORE Q

Oc n PCon 202 |

ty of Bristol, UK | 13-15 Septem

Deadline for submissions: Monday 14 June 2021 AoE

https://openmpcon.org

Opportunities for online participation
https:/ /hpc.tomdeakin.com 15

https://openmpcon.org/

