RISTOL

Performance Portability for
Next-Generation Heterogeneous Systems

Dr Tom Deakin

Rank [system [Accslerator
v

Sunway TaihuLight

I

Source; TOP500 November 2022

Latency

“Complex” cores
Instruction Level Parallelism

Deep cache hierarchy
NUMA

Wide SIMD

Throughput

More “simple” cores

Very wide SIMD

Fast context switching
Programable memory hierarchy

Latest memory technology

NVIDIA Grace-Hopper

NVIDIA Grace Hopper Superchip

CPU LPDDR5X
<512 GB

4
16x PXCIe-5 GRACE

512 GB/s CPU

HOPPER 18x NVLINK 4
GPU 900 GB/s

NVLINK C2C
~ | 900 GB/s

o
L
L
ge
N~
+ =
O
==

Images belong to their respective owners

NVLINK NETWORK
< 256 GPUs

Apple M1

Fabric

Neural | i [DRAM
Engine

UL

Cache

O None

B NVIDIA GPU
B AMD GPU
Other

Data: TOP500 June 2022
Graph: doi.org/10.1109/P3HPC56579.2022.00006

Tension between migrating to next
system (which may be GPUs), and
keeping running on current system

Performance, Portability,
and Productivity

“A code is performance portable if it

can achieve a similar fraction of peak

hardware performance on a range of
different target architectures”.

Problem
Application
Platform

Efficiency

More details in doi.org/10.1109/P3HPC51967.2020.00007

H
1 11, V1 ©

— e;(a,p) # 0
Pla,p, H) fg;i e;(a,p) “F

0 otherwise

From Pennycook, Sewall and Lee: doi.org/10.1016/j.future.2017.08.007

Cascade Lake
Skylake
Knights Landing
Rome

Power 9
ThunderX?2
Graviton 2
A64FX

P100

V100

A100

Turing
Radeon VII
MI50

IrisPro Gen9

From doi.org/10.1109/P3HPC51967.2020.00006

BabelStream Triad array size=2%**25

100

e

80

leils
olle

60

40

20

11

Application Efficiency
= o © © =
N IS o (o) o

o
o

o
(o4

o
o

I

o
N

o

From https://intel.github.io/p3-analysis-library
Based on doi.org/10.1109/MCSE.2021.3097276

| ——
D|IE|F|G o
G D|F e
D|IE|F|G ——
D|IE|F|G | —&
S171EID >
4 5 6 7 8 9 10
Platform

A] D G |
B |[E| E H J
C |fF

Unportable
Single Target
Multi-Target
Consistent (30%)
Consistent (70%)
Inconsistent

=
o

o
-~
AJ1jigenod souewlopad

o
o

12

https://intel.github.io/p3-analysis-library

1.0 1

0.8

0.6

App P (dashed)/efficiency (solid)

3 4

From doi.org/10.1109/MCSE.2021.3097276

5

6

7 8 9 10 11 12 13 14 15
of platforms

JHUMUL

CPUO
CpU1
CPU2
CPU3
CpU4
CPUb
CPUGb

CUDA eff.
CUDA PP
OpenACC eff.
OpenACC PP
OpenCL eff.
OpenCL PP
Kokkos eff.
Kokkos PP
SYCL eff.
SYCL PP
OpenMP eff.
OpenMP PP

B GPUO
Il GPU1
B GPU2
GPU3
GPU4
GPU>S
GPUG6

CpPU7

13

—@®— OpenMP —%— Kokkos
BabelStream OpenMP Target = —4€p— SYCL

—
o
|

?
‘

S
@)
1

Application Efficiency
<
N

O
(N
1

00T 3 0 2 —o
— 3 2 0 1 %

3 1 2 0
93 2 1 O

1 2 3 4

of Compilers
0] Cray GCC LLVM
Intel
From doi.org/10.1109/P3HPC56579.2022.00006 1 urceas susported by the Engineering and pryaical ciomtes Resoaran Counci ASiMo project (p/s00s072/1). 4

xC R https://github.com/ukri-excalibur/excalibur-tests

Logos belong to their respective owners

elHiFrame

@ Spack

This work was supported by the Engineering and Physical Sciences Research
Council as part of EXCALIBUR Hardware & Enabling Software [EP/X031829/1]

15

https://github.com/uob-hpc/babelstream

16

Device discovery and control
Data location and movement in discrete memory spaces

Expressing concurrent and parallel work

17

3 G

(SYCLW OpenMIP

Enabling HPC since 1997

. kokkos

Logos belong to their respective owners

18

Field Summary

1.0
- Language/Framework
% 0.8 __-&._ — ey OpenMP eff. g Raja eff.
< —ar— == W= = OpenMP PP -= #= = Raja PP
g;’ \.\§’ T~o - OpenMP (target) eff. Kokkos eff.
,g 0.6 - \ -~ =~y OpenMP (target) PP Kokkos PP
= I === oneDPL eff. == SYCL eff.
%i = m= = oneDPL PP —m== SYCL PP
S 4l
a 0.
2 \ Platform
o \ B 2 x Intel® Xeon® Gold 6230
oy 0.2 - \ 0 1 x Intel® Xeon® Gold 6230
< P BN 2 x AMD EPYC 7742
B NVIDIA A100
0.0 BN AMD MI100
P Intel® Iris® Pro 580
1 2 3 4 5 6

of platforms

) This work was supported by the Engineering and Physical
From doi.org/10.1109/P3HPC54578.2021.00007 Sciences Research Council ASiMoV project [EP/S005072/1]. 19

Architectural efficiency

86 CPU — o ——
X 0 20 40 60 80 100
e
& 54 54 38 44 39 39
@)
=)
- 57 65 41 47 41 45 |bd
< @
. =
=
E 53 52 39 45 38 44 |
W
T w
8 65 65 40 45 42 44 |&
[_|
=)
o
A
o —
[o N
(@]
@)
ol
E .
|.<
=3 @)
) N
~J
'g —
.E w
[—q
o+
o]
()]

eggeggégéggéggégég

g8 5 9 5 a8 o g 8 8 a8 o
& 7 5|4 7 3|4 "|4 7 5|4 " 5|4 7|4

TBB C++17 C++17

OpenMP Kokkos C++17 C++17 (data) (index)

(data) (index) oneDPL oneDPL

w/OMP w/OMP

From doi.org/10.1109/PMBS56514.2022.00009 The University of Bristol is an Intel oneAPI Center of Excellence helped support this work. 20

NVIDIA GPUs

C++17 C++17
CUDA Kokkos OpenMP "
1 (avee) ™ (nvec) ™ (nyot++) B (data) @ (index)

(nvc++) (nvc++)
100 -
O
80 - 2, RR |[»
coE‘ 8
? 60 - =
Q 40 A
O
& 20
3]
T " R
o 100 S oo
o
£ 801 <
c f—
:?J 60 8
40 A
20
0

Copy Add Mul Triad Dot

From doi.org/10.1109/PMBS56514.2022.00009 The University of Bristol is an Intel oneAPI Center of Excellence helped support this work. 2]

From doi.org/10.1109/PMBS56514.2022.00013

ARCHERZ2: March-August 2022

0 Fortran
B C++
B Python

Other

22

Architectural efficiency

0O 20 40 60 80 100
e |

A100 40GB Cop)1 87 87 87 87
Mu 86 86 86 86
Cray Add 89 89 89 89
Triad 89 89 89 89
Dot 86 86 86 87
| | | |
- 83 89 90 87 87 90 86
A100 40GB “°pY
NVHPC Mul - 85 89 90 86 86 90 86
Add - 85 90 88 89 89 88 89
Triad - 85 90 88 88 88 88 89
pot- o IEEEEEEE 02 03 03
| | | | |
4+ 4+ o @) > < —
< S S O © a) e
Pt bt o < C D .
- © — c < @) v
o % S o < Q
Q o = c =
o) o o 0] @)
Ao o > 8‘
(e
)
o
@)

From doi.org/10.1109/PMBS56514.2022.00013

Specialisation?

1.0 @

0.8 1

0.6 -

Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Falling CC indicates

that platform-specifia
code is being added,
or common code is
being removed. This

is commonly found
as codes are

O 4 - specialized.

0.2

Being on the PP = 0 axis

is anomalous, since at
least one platform is
failing

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be

here: single source, best
performance everywhere

But not realistic.

uoneziundo

Specialization

ol

UOISSAI

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Removing specialization
or adding common code
increases convergence;

this is typical of

introducing more and

higher-level abstractions.

0.0

|
0.0 0.2

T |
0.4 0.6

T
0.8

Code Convergence (1- Code Divergence)

From doi.org/10.1109/P3HPC56579.2022.00006

1.0

25

Which performance
portable programming
model should | use?

http://uob-hpc.github.io/2020/05/05/choosing-models.html

Use open standard parallel programming models
Express all concurrent work asynchronously
Build in tuning parameters

Test all compilers & runtimes, on all systems

Tell your vendor

27

Programming Your GPU with OpenMP
Performance Portability for GPUs

—
P

By Tom Deakin and Timothy G. Mattson

November 7, 2023
Preorder via MIT Press website

% University of
BRISTOL

https://hpc.tomdeakin.com

y @tjdeakin

tom.deakin@bristol.ac.uk

29

