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Latency

“Complex” cores
Instruction Level Parallelism

Deep cache hierarchy
NUMA

Wide SIMD

Throughput

More “simple” cores

Very wide SIMD

Fast context switching
Programable memory hierarchy

Latest memory technology
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Tension between migrating to next
system (which may be GPUs), and
keeping running on current system



Performance, Portability,
and Productivity



“A code is performance portable if it

can achieve a similar fraction of peak

hardware performance on a range of
different target architectures”.



Problem
Application
Platform

Efficiency

More details in doi.org/10.1109/P3HPC51967.2020.00007
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https://intel.github.io/p3-analysis-library
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xC R https://github.com/ukri-excalibur/excalibur-tests

Logos belong to their respective owners

elHiFrame

@ Spack

This work was supported by the Engineering and Physical Sciences Research
Council as part of EXCALIBUR Hardware & Enabling Software [EP/X031829/1]
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https://github.com/uob-hpc/babelstream

16



Device discovery and control
Data location and movement in discrete memory spaces

Expressing concurrent and parallel work
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Field Summary
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Architectural efficiency
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NVIDIA GPUs
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From doi.org/10.1109/PMBS56514.2022.00013

ARCHERZ2: March-August 2022
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Architectural efficiency
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Specialisation?



1.0 @

0.8 1

0.6 -

Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Falling CC indicates

that platform-specifia
code is being added,
or common code is
being removed. This

is commonly found
as codes are

O 4 - specialized.

0.2

Being on the PP = 0 axis

is anomalous, since at
least one platform is
failing

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be

here: single source, best
performance everywhere

But not realistic.

uoneziundo

Specialization

ol

UOISSAI

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Removing specialization
or adding common code
increases convergence;

this is typical of

introducing more and

higher-level abstractions.

0.0

|
0.0 0.2

T |
0.4 0.6

T
0.8

Code Convergence (1- Code Divergence)

From doi.org/10.1109/P3HPC56579.2022.00006
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Which performance
portable programming
model should | use?

http://uob-hpc.github.io/2020/05/05/choosing-models.html



Use open standard parallel programming models
Express all concurrent work asynchronously
Build in tuning parameters

Test all compilers & runtimes, on all systems

Tell your vendor
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Programming Your GPU with OpenMP
Performance Portability for GPUs
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